Simulation Results from the AIMS™ EUV Development Project

Anthony Garetto, Dirk Hellweg, Jan Hendrik Peters, Sascha Perlitz, Markus Weiss Brussels, 1. Oct. 2012

- 1 Introduction
- 2 Tool Layout Overview
- 3 Simulation Results
- 4 Summary

- 1 Introduction
- **2** Tool Layout Overview
- 3 Simulation Results
- 4 Summary

Photomask closed loop defect solution

- AIMS™ allows defect qualification based on the aerial image produced by scanner like illumination
 - Verifies that defects are printable and require repair
 - Verifies that repair is successful
- MeRiT® provides repair solutions for a wide variety of defects

EUV mask defects and repairs must be qualified before printing wafers

- 1 Introduction
- 2 Tool Layout Overview
- 3 Simulation Results
- 4 Summary

Status of the Project

- AIMS™ EUV Project started mid of 2011
- Project on track
- Final Design Milestone successfully passed
 - Tool layout fixed for two configurations (sub-fab and bay-chase)
 - All components ready for production
 - Some components already in manufacturing
 - Simulation of tool final performance conducted

AIMS™ EUV layout

EUV Metrology Core (EMC)

- 1 Introduction
- **2** Tool Layout Overview
- 3 Simulation Results
- 4 Summary

Performance Simulation

Basic flow

- Performance of components are derived from
 - Optical simulation
 - Statistical behavior
 - Budget breakdowns
 - Test stand measurements
- Performance of all major specifications checked in the area of
 - Measurement speed
 - Source performance
 - Optical component performance
 - Resolution, Reproducibility, Location Accuracy
- Results of Simulation compared to Acceptance Test criteria

Measurement Speed

Run rate determined by

- Source brightness (dominant factor)
- Camera read out speed
- Stage movement

Measurement procedure

For a given pupil fill capture 7 focal plane images per site

Specification	 Standard mode ≥38.5% pupil fill 28 sites per hour Standard mode ≥77% pupil fill 51 sites per hour Fast mode ≥38.5% pupil fill 56 sites per hour
Result	In specification

Source Performance

Source input parameters for simulation measured from test stand data

- Size stability
- Location stability
- Spectral stability
- Pulse energy stability
- Brightness

- Dose stability
- Pupil intensity
- Run rate

0.92 0.87 0.86 0.85

Optical performance

Mirror performance derived from budget

- Mirror surface figure
- Coating errors
- Assembly
- Metrology errors

Mask simulated in 3D with S-Litho

- Complete stack information
- Different illumination conditions

Image contrast

 Monte Carlo input for parameter variations

Mask Stack Simulation Parameters

Illumination settings utilized:

NA	0.33/4	0.33/4	0.33/4	0.33/4	0.33/4
Illumination Type	Dipole-x	Dipole-y	Annular	C-Quad	Quasar
Sigma's geometric	0.20 - 0.90	0.20 - 0.90	0.65 - 0.90	0.20 - 0.90	0.20 - 0.90

Out-of-band Contribution

Input data for simulation:

- 180nm-1100nm source spectrum measured and extrapolated to 120nm
- literature values for spectral purity filter transmission and gas absorption
- reflectivity and stray light loss measurements of mirror coatings
- supplier information on spectral quantum efficiency of CCD chip

Specification	Out-of-Band power in the 120nm to 400nm wavelength range < 1%.
Result	In specification

CD Reproducibility

Simulation Conditions

- Imaging/Illumination: NA 0.33, Dipole 90°, Sigma 0.20/0.90
- Source performance as measured on source test stand
- Features at mask level
 - 64 nm lines with 128 nm pitch
 - 76 nm lines with 384 nm pitch
 - Simulate aerial image on fine grid

2. Pixelate according to CCD pixel size

3. Apply photon noise to each pixel

(Noise over exaggerated)

4. Determine CD with specified averaging

$$CD_i = xy nm$$

Repeat many times

Specification	•	Best focus: CD-Repro (3-sigma) ≤ 1.5 nm (mask level)
Result	•	In specification

- 1 Introduction
- **2** Tool Layout Overview
- 3 Simulation Results
- 4 Summary

Summary

- Performance of AIMS™ EUV at final design simulated w.r.t. final acceptance criteria
- Design meets or exceeds the specification set
- Several long lead items already in production
- Project on track for prototype in August 2014

Acknowledgements

 The authors would like to thank SEMATECH and the EMI consortium for their support and contributions to this project

We make it visible.